12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- package dns
- import (
- "crypto"
- "crypto/dsa"
- "crypto/ecdsa"
- "crypto/rsa"
- "math/big"
- "strconv"
- )
- const format = "Private-key-format: v1.3\n"
- // PrivateKeyString converts a PrivateKey to a string. This string has the same
- // format as the private-key-file of BIND9 (Private-key-format: v1.3).
- // It needs some info from the key (the algorithm), so its a method of the DNSKEY
- // It supports rsa.PrivateKey, ecdsa.PrivateKey and dsa.PrivateKey
- func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
- algorithm := strconv.Itoa(int(r.Algorithm))
- algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
- switch p := p.(type) {
- case *rsa.PrivateKey:
- modulus := toBase64(p.PublicKey.N.Bytes())
- e := big.NewInt(int64(p.PublicKey.E))
- publicExponent := toBase64(e.Bytes())
- privateExponent := toBase64(p.D.Bytes())
- prime1 := toBase64(p.Primes[0].Bytes())
- prime2 := toBase64(p.Primes[1].Bytes())
- // Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
- // and from: http://code.google.com/p/go/issues/detail?id=987
- one := big.NewInt(1)
- p1 := big.NewInt(0).Sub(p.Primes[0], one)
- q1 := big.NewInt(0).Sub(p.Primes[1], one)
- exp1 := big.NewInt(0).Mod(p.D, p1)
- exp2 := big.NewInt(0).Mod(p.D, q1)
- coeff := big.NewInt(0).ModInverse(p.Primes[1], p.Primes[0])
- exponent1 := toBase64(exp1.Bytes())
- exponent2 := toBase64(exp2.Bytes())
- coefficient := toBase64(coeff.Bytes())
- return format +
- "Algorithm: " + algorithm + "\n" +
- "Modulus: " + modulus + "\n" +
- "PublicExponent: " + publicExponent + "\n" +
- "PrivateExponent: " + privateExponent + "\n" +
- "Prime1: " + prime1 + "\n" +
- "Prime2: " + prime2 + "\n" +
- "Exponent1: " + exponent1 + "\n" +
- "Exponent2: " + exponent2 + "\n" +
- "Coefficient: " + coefficient + "\n"
- case *ecdsa.PrivateKey:
- var intlen int
- switch r.Algorithm {
- case ECDSAP256SHA256:
- intlen = 32
- case ECDSAP384SHA384:
- intlen = 48
- }
- private := toBase64(intToBytes(p.D, intlen))
- return format +
- "Algorithm: " + algorithm + "\n" +
- "PrivateKey: " + private + "\n"
- case *dsa.PrivateKey:
- T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8)
- prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8))
- subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20))
- base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8))
- priv := toBase64(intToBytes(p.X, 20))
- pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8))
- return format +
- "Algorithm: " + algorithm + "\n" +
- "Prime(p): " + prime + "\n" +
- "Subprime(q): " + subprime + "\n" +
- "Base(g): " + base + "\n" +
- "Private_value(x): " + priv + "\n" +
- "Public_value(y): " + pub + "\n"
- default:
- return ""
- }
- }
|