123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- package dns
- import (
- "crypto"
- "crypto/dsa"
- "crypto/ecdsa"
- "crypto/elliptic"
- "crypto/rand"
- "crypto/rsa"
- "math/big"
- )
- // Generate generates a DNSKEY of the given bit size.
- // The public part is put inside the DNSKEY record.
- // The Algorithm in the key must be set as this will define
- // what kind of DNSKEY will be generated.
- // The ECDSA algorithms imply a fixed keysize, in that case
- // bits should be set to the size of the algorithm.
- func (k *DNSKEY) Generate(bits int) (crypto.PrivateKey, error) {
- switch k.Algorithm {
- case DSA, DSANSEC3SHA1:
- if bits != 1024 {
- return nil, ErrKeySize
- }
- case RSAMD5, RSASHA1, RSASHA256, RSASHA1NSEC3SHA1:
- if bits < 512 || bits > 4096 {
- return nil, ErrKeySize
- }
- case RSASHA512:
- if bits < 1024 || bits > 4096 {
- return nil, ErrKeySize
- }
- case ECDSAP256SHA256:
- if bits != 256 {
- return nil, ErrKeySize
- }
- case ECDSAP384SHA384:
- if bits != 384 {
- return nil, ErrKeySize
- }
- }
- switch k.Algorithm {
- case DSA, DSANSEC3SHA1:
- params := new(dsa.Parameters)
- if err := dsa.GenerateParameters(params, rand.Reader, dsa.L1024N160); err != nil {
- return nil, err
- }
- priv := new(dsa.PrivateKey)
- priv.PublicKey.Parameters = *params
- err := dsa.GenerateKey(priv, rand.Reader)
- if err != nil {
- return nil, err
- }
- k.setPublicKeyDSA(params.Q, params.P, params.G, priv.PublicKey.Y)
- return priv, nil
- case RSAMD5, RSASHA1, RSASHA256, RSASHA512, RSASHA1NSEC3SHA1:
- priv, err := rsa.GenerateKey(rand.Reader, bits)
- if err != nil {
- return nil, err
- }
- k.setPublicKeyRSA(priv.PublicKey.E, priv.PublicKey.N)
- return priv, nil
- case ECDSAP256SHA256, ECDSAP384SHA384:
- var c elliptic.Curve
- switch k.Algorithm {
- case ECDSAP256SHA256:
- c = elliptic.P256()
- case ECDSAP384SHA384:
- c = elliptic.P384()
- }
- priv, err := ecdsa.GenerateKey(c, rand.Reader)
- if err != nil {
- return nil, err
- }
- k.setPublicKeyECDSA(priv.PublicKey.X, priv.PublicKey.Y)
- return priv, nil
- default:
- return nil, ErrAlg
- }
- }
- // Set the public key (the value E and N)
- func (k *DNSKEY) setPublicKeyRSA(_E int, _N *big.Int) bool {
- if _E == 0 || _N == nil {
- return false
- }
- buf := exponentToBuf(_E)
- buf = append(buf, _N.Bytes()...)
- k.PublicKey = toBase64(buf)
- return true
- }
- // Set the public key for Elliptic Curves
- func (k *DNSKEY) setPublicKeyECDSA(_X, _Y *big.Int) bool {
- if _X == nil || _Y == nil {
- return false
- }
- var intlen int
- switch k.Algorithm {
- case ECDSAP256SHA256:
- intlen = 32
- case ECDSAP384SHA384:
- intlen = 48
- }
- k.PublicKey = toBase64(curveToBuf(_X, _Y, intlen))
- return true
- }
- // Set the public key for DSA
- func (k *DNSKEY) setPublicKeyDSA(_Q, _P, _G, _Y *big.Int) bool {
- if _Q == nil || _P == nil || _G == nil || _Y == nil {
- return false
- }
- buf := dsaToBuf(_Q, _P, _G, _Y)
- k.PublicKey = toBase64(buf)
- return true
- }
- // Set the public key (the values E and N) for RSA
- // RFC 3110: Section 2. RSA Public KEY Resource Records
- func exponentToBuf(_E int) []byte {
- var buf []byte
- i := big.NewInt(int64(_E))
- if len(i.Bytes()) < 256 {
- buf = make([]byte, 1)
- buf[0] = uint8(len(i.Bytes()))
- } else {
- buf = make([]byte, 3)
- buf[0] = 0
- buf[1] = uint8(len(i.Bytes()) >> 8)
- buf[2] = uint8(len(i.Bytes()))
- }
- buf = append(buf, i.Bytes()...)
- return buf
- }
- // Set the public key for X and Y for Curve. The two
- // values are just concatenated.
- func curveToBuf(_X, _Y *big.Int, intlen int) []byte {
- buf := intToBytes(_X, intlen)
- buf = append(buf, intToBytes(_Y, intlen)...)
- return buf
- }
- // Set the public key for X and Y for Curve. The two
- // values are just concatenated.
- func dsaToBuf(_Q, _P, _G, _Y *big.Int) []byte {
- t := divRoundUp(divRoundUp(_G.BitLen(), 8)-64, 8)
- buf := []byte{byte(t)}
- buf = append(buf, intToBytes(_Q, 20)...)
- buf = append(buf, intToBytes(_P, 64+t*8)...)
- buf = append(buf, intToBytes(_G, 64+t*8)...)
- buf = append(buf, intToBytes(_Y, 64+t*8)...)
- return buf
- }
|