yawyd 0199d5cd96 open telemetry | 1 рік тому | |
---|---|---|
.. | ||
examples | 1 рік тому | |
templates | 1 рік тому | |
.helmignore | 1 рік тому | |
Chart.yaml | 1 рік тому | |
Makefile | 1 рік тому | |
README.md | 1 рік тому | |
values.yaml | 1 рік тому |
This Helm chart is a lightweight way to configure and run our official Elasticsearch Docker image.
Warning When it comes to running the Elastic on Kubernetes infrastructure, we recommend Elastic Cloud on Kubernetes (ECK) as the best way to run and manage the Elastic Stack.
ECK offers many operational benefits for both our basic-tier and our enterprise-tier customers, such as spinning up cluster nodes that were lost on failed infrastructure, seamless upgrades, rolling cluster changes, and much much more.
With the release of the Elastic Stack Helm charts for Elastic version 8.5.1, we are handing over the ongoing maintenance of our Elastic Stack Helm charts to the community and contributors. This repository will finally be archived after 6 months time. Elastic Stacks deployed on Kubernetes through Helm charts will still be fully supported under EOL limitations.
Since we want to provide an even better experience for our customers by running the Elastic Stack on Kubernetes, we will continue maintaining the Helm charts applicable to ECK Custom Resources. These charts can be found in the ECK repository.
Helm charts will currently be maintained for ECK Enterprise-tier customers, however, we encourage the community to engage with the existing Helm charts for the Elastic Stack and continue supporting their ongoing maintenance.
See https://github.com/elastic/helm-charts/issues/1731 for more details.
See supported configurations for more details.
Add the Elastic Helm charts repo:
helm repo add elastic https://helm.elastic.co
Install it: helm install elasticsearch elastic/elasticsearch
Clone the git repo: git clone git@github.com:elastic/helm-charts.git
Install it: helm install elasticsearch ./helm-charts/elasticsearch --set imageTag=8.5.1
Please always check CHANGELOG.md and BREAKING_CHANGES.md before upgrading to a new chart version.
OnDelete
updateStrategy.esJavaOpts
and to set
the CPU/Memory resources
to something suitable for your cluster.Parameter | Description | Default |
---|---|---|
antiAffinityTopologyKey |
The anti-affinity topology key. By default this will prevent multiple Elasticsearch nodes from running on the same Kubernetes node | kubernetes.io/hostname |
antiAffinity |
Setting this to hard enforces the anti-affinity rules. If it is set to soft it will be done "best effort". Other values will be ignored | hard |
clusterHealthCheckParams |
The Elasticsearch cluster health status params that will be used by readiness probe command | wait_for_status=green&timeout=1s |
clusterName |
This will be used as the Elasticsearch cluster.name and should be unique per cluster in the namespace | elasticsearch |
createCert |
This will automatically create the SSL certificates | true |
enableServiceLinks |
Set to false to disabling service links, which can cause slow pod startup times when there are many services in the current namespace. | true |
envFrom |
Templatable string to be passed to the environment from variables which will be appended to the envFrom: definition for the container |
[] |
esConfig |
Allows you to add any config files in /usr/share/elasticsearch/config/ such as elasticsearch.yml and log4j2.properties . See values.yaml for an example of the formatting |
{} |
esJavaOpts |
Java options for Elasticsearch. This is where you could configure the jvm heap size | "" |
esJvmOptions |
Java options for Elasticsearch. Override the default JVM options by adding custom options files . See values.yaml for an example of the formatting | {} |
esMajorVersion |
Deprecated. Instead, use the version of the chart corresponding to your ES minor version. Used to set major version specific configuration. If you are using a custom image and not running the default Elasticsearch version you will need to set this to the version you are running (e.g. esMajorVersion: 6 ) |
"" |
extraContainers |
Templatable string of additional containers to be passed to the tpl function |
"" |
extraEnvs |
Extra environment variables which will be appended to the env: definition for the container |
[] |
extraInitContainers |
Templatable string of additional initContainers to be passed to the tpl function |
"" |
extraVolumeMounts |
Templatable string of additional volumeMounts to be passed to the tpl function |
"" |
extraVolumes |
Templatable string of additional volumes to be passed to the tpl function |
"" |
fullnameOverride |
Overrides the clusterName and nodeGroup when used in the naming of resources. This should only be used when using a single nodeGroup , otherwise you will have name conflicts |
"" |
healthNameOverride |
Overrides test-elasticsearch-health pod name |
"" |
hostAliases |
Configurable hostAliases | [] |
httpPort |
The http port that Kubernetes will use for the healthchecks and the service. If you change this you will also need to set http.port in extraEnvs |
9200 |
imagePullPolicy |
The Kubernetes imagePullPolicy value | IfNotPresent |
imagePullSecrets |
Configuration for imagePullSecrets so that you can use a private registry for your image | [] |
imageTag |
The Elasticsearch Docker image tag | 8.5.1 |
image |
The Elasticsearch Docker image | docker.elastic.co/elasticsearch/elasticsearch |
ingress |
Configurable ingress to expose the Elasticsearch service. See values.yaml for an example | see values.yaml |
initResources |
Allows you to set the resources for the initContainer in the StatefulSet |
{} |
keystore |
Allows you map Kubernetes secrets into the keystore. See the config example and how to use the keystore | [] |
labels |
Configurable labels applied to all Elasticsearch pods | {} |
lifecycle |
Allows you to add lifecycle hooks. See values.yaml for an example of the formatting | {} |
masterService |
The service name used to connect to the masters. You only need to set this if your master nodeGroup is set to something other than master . See Clustering and Node Discovery for more information |
"" |
maxUnavailable |
The maxUnavailable value for the pod disruption budget. By default this will prevent Kubernetes from having more than 1 unhealthy pod in the node group | 1 |
minimumMasterNodes |
The value for discovery.zen.minimum_master_nodes. Should be set to (master_eligible_nodes / 2) + 1 . Ignored in Elasticsearch versions >= 7 |
2 |
nameOverride |
Overrides the clusterName when used in the naming of resources |
"" |
networkHost |
Value for the network.host Elasticsearch setting | 0.0.0.0 |
networkPolicy |
The NetworkPolicy to set. See values.yaml for an example |
{http.enabled: false,transport.enabled: false} |
nodeAffinity |
Value for the node affinity settings | {} |
nodeGroup |
This is the name that will be used for each group of nodes in the cluster. The name will be clusterName-nodeGroup-X , nameOverride-nodeGroup-X if a nameOverride is specified, and fullnameOverride-X if a fullnameOverride is specified |
master |
nodeSelector |
Configurable nodeSelector so that you can target specific nodes for your Elasticsearch cluster | {} |
persistence |
Enables a persistent volume for Elasticsearch data. Can be disabled for nodes that only have roles which don't require persistent data | see values.yaml |
podAnnotations |
Configurable annotations applied to all Elasticsearch pods | {} |
podManagementPolicy |
By default Kubernetes deploys StatefulSets serially. This deploys them in parallel so that they can discover each other | Parallel |
podSecurityContext |
Allows you to set the securityContext for the pod | see values.yaml |
podSecurityPolicy |
Configuration for create a pod security policy with minimal permissions to run this Helm chart with create: true . Also can be used to reference an external pod security policy with name: "externalPodSecurityPolicy" |
see values.yaml |
priorityClassName |
The name of the PriorityClass. No default is supplied as the PriorityClass must be created first | "" |
protocol |
The protocol that will be used for the readiness probe. Change this to https if you have xpack.security.http.ssl.enabled set |
http |
rbac |
Configuration for creating a role, role binding and ServiceAccount as part of this Helm chart with create: true . Also can be used to reference an external ServiceAccount with serviceAccountName: "externalServiceAccountName" , or automount the service account token |
see values.yaml |
readinessProbe |
Configuration fields for the readiness probe | see values.yaml |
replicas |
Kubernetes replica count for the StatefulSet (i.e. how many pods) | 3 |
resources |
Allows you to set the resources for the StatefulSet | see values.yaml |
roles |
A list with the specific roles for the nodeGroup |
see values.yaml |
schedulerName |
Name of the alternate scheduler | "" |
secret.enabled |
Enable Secret creation for Elasticsearch credentials | true |
secret.password |
Initial password for the elastic user | "" (generated randomly) |
secretMounts |
Allows you easily mount a secret as a file inside the StatefulSet. Useful for mounting certificates and other secrets. See values.yaml for an example | [] |
securityContext |
Allows you to set the securityContext for the container | see values.yaml |
service.annotations |
LoadBalancer annotations that Kubernetes will use for the service. This will configure load balancer if service.type is LoadBalancer |
{} |
service.enabled |
Enable non-headless service | true |
service.externalTrafficPolicy |
Some cloud providers allow you to specify the LoadBalancer externalTrafficPolicy. Kubernetes will use this to preserve the client source IP. This will configure load balancer if service.type is LoadBalancer |
"" |
service.httpPortName |
The name of the http port within the service | http |
service.labelsHeadless |
Labels to be added to headless service | {} |
service.labels |
Labels to be added to non-headless service | {} |
service.loadBalancerIP |
Some cloud providers allow you to specify the loadBalancer IP. If the loadBalancerIP field is not specified, the IP is dynamically assigned. If you specify a loadBalancerIP but your cloud provider does not support the feature, it is ignored. |
"" |
service.loadBalancerSourceRanges |
The IP ranges that are allowed to access | [] |
service.nodePort |
Custom nodePort port that can be set if you are using service.type: nodePort |
"" |
service.transportPortName |
The name of the transport port within the service | transport |
service.publishNotReadyAddresses |
Consider that all endpoints are considered "ready" even if the Pods themselves are not | false |
service.type |
Elasticsearch Service Types | ClusterIP |
sysctlInitContainer |
Allows you to disable the sysctlInitContainer if you are setting sysctl vm.max_map_count with another method |
enabled: true |
sysctlVmMaxMapCount |
Sets the sysctl vm.max_map_count needed for Elasticsearch | 262144 |
terminationGracePeriod |
The terminationGracePeriod in seconds used when trying to stop the pod | 120 |
tests.enabled |
Enable creating test related resources when running helm template or helm test |
true |
tolerations |
Configurable tolerations | [] |
transportPort |
The transport port that Kubernetes will use for the service. If you change this you will also need to set transport port configuration in extraEnvs |
9300 |
updateStrategy |
The updateStrategy for the StatefulSet. By default Kubernetes will wait for the cluster to be green after upgrading each pod. Setting this to OnDelete will allow you to manually delete each pod during upgrades |
RollingUpdate |
volumeClaimTemplate |
Configuration for the volumeClaimTemplate for StatefulSets. You will want to adjust the storage (default 30Gi ) and the storageClassName if you are using a different storage class |
see values.yaml |
This chart is designed to run on production scale Kubernetes clusters with multiple nodes, lots of memory and persistent storage. For that reason it can be a bit tricky to run them against local Kubernetes environments such as Minikube.
This chart is highly tested with GKE, but some K8S distribution also requires specific configurations.
We provide examples of configuration for the following K8S providers:
All the Elasticsearch pods deployed share the same configuration. If you need to
deploy dedicated nodes types (for example dedicated master and data nodes),
you can deploy multiple releases of this chart with different configurations
while they share the same clusterName
value.
For each Helm release, the nodes types can then be defined using roles
value.
An example of Elasticsearch cluster using 2 different Helm releases for master, data and coordinating nodes can be found in examples/multi.
Every node is implicitly a coordinating node. This means that a node that has an explicit empty list of roles will only act as a coordinating node.
When deploying coordinating-only node with Elasticsearch chart, it is required
to define the empty list of roles in both roles
value and node.roles
settings:
roles: []
esConfig:
elasticsearch.yml: |
node.roles: []
More details in #1186 (comment)
This chart facilitates Elasticsearch node discovery and services by creating two
Service
definitions in Kubernetes, one with the name $clusterName-$nodeGroup
and another named $clusterName-$nodeGroup-headless
.
Only Ready
pods are a part of the $clusterName-$nodeGroup
service, while all
pods ( Ready
or not) are a part of $clusterName-$nodeGroup-headless
.
If your group of master nodes has the default nodeGroup: master
then you can
just add new groups of nodes with a different nodeGroup
and they will
automatically discover the correct master. If your master nodes have a different
nodeGroup
name then you will need to set masterService
to
$clusterName-$masterNodeGroup
.
The chart value for masterService
is used to populate
discovery.zen.ping.unicast.hosts
, which Elasticsearch nodes will use to
contact master nodes and form a cluster.
Therefore, to add a group of nodes to an existing cluster, setting
masterService
to the desired Service
name of the related cluster is
sufficient.
This Helm chart can generate a [Kubernetes Secret][] or use an existing one to setup Elastic credentials.
This Helm chart can use existing [Kubernetes Secret][] to setup Elastic certificates for example. These secrets should be created outside of this chart and accessed using environment variables and volumes.
This chart is setting TLS and creating a certificate by default, but you can also provide your own certs as a K8S secret. An example of configuration for providing existing certificates can be found in examples/security.
If you currently have a cluster deployed with the helm/charts stable chart you can follow the migration guide.
The recommended way to install plugins into our Docker images is to create a custom Docker image.
The Dockerfile would look something like:
ARG elasticsearch_version
FROM docker.elastic.co/elasticsearch/elasticsearch:${elasticsearch_version}
RUN bin/elasticsearch-plugin install --batch repository-gcs
And then updating the image
in values to point to your custom image.
There are a couple reasons we recommend this.
Create the secret, the key name needs to be the keystore key path. In this example we will create a secret from a file and from a literal string.
kubectl create secret generic encryption-key --from-file=xpack.watcher.encryption_key=./watcher_encryption_key
kubectl create secret generic slack-hook --from-literal=xpack.notification.slack.account.monitoring.secure_url='https://hooks.slack.com/services/asdasdasd/asdasdas/asdasd'
To add these secrets to the keystore:
keystore:
- secretName: encryption-key
- secretName: slack-hook
All keys in the secret will be added to the keystore. To create the previous example in one secret you could also do:
kubectl create secret generic keystore-secrets --from-file=xpack.watcher.encryption_key=./watcher_encryption_key --from-literal=xpack.notification.slack.account.monitoring.secure_url='https://hooks.slack.com/services/asdasdasd/asdasdas/asdasd'
keystore:
- secretName: keystore-secrets
If you are using these secrets for other applications (besides the Elasticsearch
keystore) then it is also possible to specify the keystore path and which keys
you want to add. Everything specified under each keystore
item will be passed
through to the volumeMounts
section for mounting the secret. In this
example we will only add the slack_hook
key from a secret that also has other
keys. Our secret looks like this:
kubectl create secret generic slack-secrets --from-literal=slack_channel='#general' --from-literal=slack_hook='https://hooks.slack.com/services/asdasdasd/asdasdas/asdasd'
We only want to add the slack_hook
key to the keystore at path
xpack.notification.slack.account.monitoring.secure_url
:
keystore:
- secretName: slack-secrets
items:
- key: slack_hook
path: xpack.notification.slack.account.monitoring.secure_url
You can also take a look at the config example which is used as part of the automated testing pipeline.
You can use postStart
lifecycle hooks to run code triggered after a
container is created.
Here is an example of postStart
hook to configure templates:
lifecycle:
postStart:
exec:
command:
- bash
- -c
- |
#!/bin/bash
# Add a template to adjust number of shards/replicas
TEMPLATE_NAME=my_template
INDEX_PATTERN="logstash-*"
SHARD_COUNT=8
REPLICA_COUNT=1
ES_URL=http://localhost:9200
while [[ "$(curl -s -o /dev/null -w '%{http_code}\n' $ES_URL)" != "200" ]]; do sleep 1; done
curl -XPUT "$ES_URL/_template/$TEMPLATE_NAME" -H 'Content-Type: application/json' -d'{"index_patterns":['\""$INDEX_PATTERN"\"'],"settings":{"number_of_shards":'$SHARD_COUNT',"number_of_replicas":'$REPLICA_COUNT'}}'
Please check CONTRIBUTING.md before any contribution or for any questions about our development and testing process.