################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ import logging import sys from pyflink.common.time import Instant from pyflink.common import Types from pyflink.datastream import StreamExecutionEnvironment from pyflink.table import (DataTypes, TableDescriptor, Schema, StreamTableEnvironment) from pyflink.table.expressions import lit, col from pyflink.table.window import Tumble def tumble_window_demo(): env = StreamExecutionEnvironment.get_execution_environment() env.set_parallelism(1) t_env = StreamTableEnvironment.create(stream_execution_environment=env) # define the source with watermark definition ds = env.from_collection( collection=[ (Instant.of_epoch_milli(1000), 'Alice', 110.1), (Instant.of_epoch_milli(4000), 'Bob', 30.2), (Instant.of_epoch_milli(3000), 'Alice', 20.0), (Instant.of_epoch_milli(2000), 'Bob', 53.1), (Instant.of_epoch_milli(5000), 'Alice', 13.1), (Instant.of_epoch_milli(3000), 'Bob', 3.1), (Instant.of_epoch_milli(7000), 'Bob', 16.1), (Instant.of_epoch_milli(10000), 'Alice', 20.1) ], type_info=Types.ROW([Types.INSTANT(), Types.STRING(), Types.FLOAT()])) table = t_env.from_data_stream( ds, Schema.new_builder() .column_by_expression("ts", "CAST(f0 AS TIMESTAMP(3))") .column("f1", DataTypes.STRING()) .column("f2", DataTypes.FLOAT()) .watermark("ts", "ts - INTERVAL '3' SECOND") .build() ).alias("ts", "name", "price") # define the sink t_env.create_temporary_table( 'sink', TableDescriptor.for_connector('print') .schema(Schema.new_builder() .column('name', DataTypes.STRING()) .column('total_price', DataTypes.FLOAT()) .column('w_start', DataTypes.TIMESTAMP_LTZ()) .column('w_end', DataTypes.TIMESTAMP_LTZ()) .build()) .build()) # define the tumble window operation table = table.window(Tumble.over(lit(5).seconds).on(col("ts")).alias("w")) \ .group_by(col('name'), col('w')) \ .select(col('name'), col('price').sum, col("w").start, col("w").end) # submit for execution table.execute_insert('sink') \ .wait() # remove .wait if submitting to a remote cluster, refer to # https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/python/faq/#wait-for-jobs-to-finish-when-executing-jobs-in-mini-cluster # for more details if __name__ == '__main__': logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s") tumble_window_demo()